International Journal of Sustainable Lighting 2019-08-18T00:50:28+00:00 Geun Young Yun Open Journal Systems <p><strong>Introduction</strong></p> <p>The International Journal of Sustainable Lighting (IJSL) is the successor of the former Ingineria Iluminatului - Journal of Lighting Engineering, issued in Romania starting with 1999. IJSL aims to become an internationally recognized journal and to complement the existing prestigious lighting journals with an emphasis on emerging lighting issues including light pollution, chronobiology, sustainable buildings by extending its readers and authors to the worldwide lighting communities. The IJSL is an open access journal and is published bi-annaully in June, and December each year.</p> <p><strong>Aims and Scope</strong></p> <p>The International Journal of Sustainable Lighting is based on a change of paradigm from energy-efficiency to trans-disciplinarity (including energy, ecology, biology, green buildings, astronomy); it is a peer reviewed scientific journal encompassing experimental, theoretical and applied research results with respect to field of sustainable lighting. It provides a forum for architects, engineers, biologists and researchers involved in the design, operation, construction and utilization of lighting.</p> <p>The foremost objective is to give a quality online publication to our readers and authors. In this pursuit, our effort focuses upon quality publishing and an unquestioned commitment to the highest standards of professional and corporate ethics.</p> <p><strong>Editors-in-Chief</strong></p> <p>Jeong Tai Kim, Professor, Kyung Hee University, Republic of Korea</p> <p>Dorin Beu, Professor, Technical University of Cluj-Napoca, Romania</p> <p><strong>Executive Editor</strong></p> <p>Geun Young Yun, Associate Professor, Kyung Hee University, Republic of Korea</p> <p>&nbsp;</p> <p>&nbsp;</p> Impact of artificial illumination on the development of a leafmining moth in urban trees 2019-08-18T00:50:28+00:00 Sibylle Schroer <p>Light emission from street lighting or other light sources alters the living conditions for organisms in urban areas. Nowadays, the impact of light at night (ALAN) on urban plants and their trophic environment is not well understood. To gain more insight about herbivore plant’s interaction when exposed to ALAN, outdoor and greenhouse tests were conducted using the horse-chestnut leafminer, <em>Cameraria ohridella</em>, as a test organism due to its adaptive behavior. At the end of the season, the development of chestnut tree leaves and the leafminer were measured at illuminated versus non-illuminated sites in the city of Berlin and the rural area of Brandenburg. Illuminated leaves were larger than those grown in darker rural areas and, extended larval activity was recorded. Additionally, in the greenhouse, infested chestnut seedlings were exposed to two different light regimes; one treatment provided continuous illumination and the other short daylight conditions. After only one week, the mine size was lower on illuminated seedlings, presumably due to reduced leaf senescence. The leafminer developed a lower proportion of diapausing pupae and a higher proportion of free pupae, which leads to a further generation within the season. The results indicate a strong impact of ALAN on plant metabolism, a secondary effect on leafminer development and its larval activity. For urban trees, the consequence might be an increased herbivore / parasite pressure. For herbivores and parasites less adapted to winter damages than the invasive leafminer a reduced dormancy due to direct or indirect effects of ALAN could even threat the population.</p> 2019-08-17T04:27:14+00:00 Copyright (c) 2019 Sibylle Schroer Testing for changes in light emissions from certified International Dark Sky Places 2019-08-18T00:50:28+00:00 Christopher C. M. Kyba <p>The International Dark-Sky Places (IDSP) program of the International Dark-Sky Association is a voluntary certification in which communities commit via legislative changes to move towards more sustainable lighting that reduces light pollution. As over 115 IDSP have now been certified, it is interesting to ask the extent to which this certification results in reduced light emissions. In this paper, we compared trends in upward light emission of 98 communities located in or near IDSP to those of 98 similarly sized communities further away from the IDSP, using a night lights observing satellite (the Visible Infrared Imaging Radiometer Suite Day-Night Band). The current dataset is not sufficient to distinguish the hypothesis that IDSP certification results in a lower rate of change in upward light emissions from the null hypothesis that IDSP certification has no impact. This result is with regard to upward light emissions only: it is possible that certification has resulted in decreases in night sky brightness that the satellite is not able to observe.</p> 2019-08-17T04:28:52+00:00 Copyright (c) 2019 Christopher C. M. Kyba