##plugins.themes.bootstrap3.article.main##

Ken Walczak Geza Gyuk Jesus Garcia Cynthia Tarr

Abstract

The NITELite (Night Imaging of Terrestrial Environments Lite) system is a method of collecting regional-scale light emissions data from a latex high-altitude balloon (LHAB) platform. An LHAB can reach altitudes of 25-30km from where the nighttime imaging is performed. LHAB missions are relatively low cost (<$2000US/flight) and easy to repeat. A NITELite mission collects data with high resolution (<10m/px), color information (RGB) over a region of thousands of square kilometers. This system provides a new source of data for remote sensing of artificial light at night (ALAN) research, filling the data gap between aerial and satellite observations. Nighttime LHAB-based imaging can provide data to support fields of ALAN research such as observation of real-time variability, monitoring effects of seasonal changes and events of interest, and measuring angular dependence of ALAN sources. NITELite includes an imaging system, an inertial and positional recording on-board-computer, and an altitude control system. Preliminary results demonstrate the potential of this method for future ALAN research.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords
References
[1] Gibson, J., Olivia, S., & Boe‐Gibson, G. (2020). NIGHT LIGHTS IN ECONOMICS: SOURCES AND USES 1. Journal of Economic Surveys, 34(5), 955-980.
[2] Owens, A. C., Cochard, P., Durrant, J., Farnworth, B., Perkin, E. K., & Seymoure, B. (2020). Light pollution is a driver of insect declines. Biological Conservation, 241, 108259.
[3] Nadybal, S. M., Collins, T. W., & Grineski, S. E. (2020). Light pollution inequities in the continental United States: A distributive environmental justice analysis. Environmental research, 189, 109959.
[4] Rybnikova, N., & Portnov, B. A. (2020). Testing the generality of economic activity models estimated by merging night-time satellite images with socioeconomic data. Advances in Space Research, 66(11), 2610-2620.
[5] Elvidge, C. D., Baugh, K. E., Kihn, E. A., Kroehl, H. W., & Davis, E. R. (1997). Mapping city lights with nighttime data from the DMSP Operational Linescan System. Photogrammetric Engineering and Remote Sensing, 63(6), 727-734.
[6] Xiao, Q., Gee, G., Jones, R. R., Jia, P., James, P., & Hale, L. (2020). Cross-sectional association between outdoor artificial light at night and sleep duration in middle-to-older aged adults: the NIH-AARP Diet and Health Study. Environmental research, 180, 108823.
[7] Buxton, R. T., Seymoure, B. M., White, J., Angeloni, L. M., Crooks, K. R., Fristrup, K., ... & Wittemyer, G. (2020). The relationship between anthropogenic light and noise in US national parks. Landscape Ecology, 35, 1371-1384.
[8] Kyba, C. C. M., Ruby, A., Kuechly, H. U., Kinzey, B., Miller, N., Sanders, J., ... & Espey, B. (2020). Direct measurement of the contribution of street lighting to satellite observations of nighttime light emissions from urban areas. Lighting Research & Technology, 1477153520958463.
[9] Greenhalgh, J., & Meadows, K. (1999). Th use of patient-based measures of health in improving the process and outcomes of patien review. Journal of Evaluation in Clinical, 416.
[10] Bouroussis, C. A., & Topalis, F. V. (2020). Assessment of outdoor lighting installations and their impact on light pollution using unmanned aircraft systems-The concept of the drone-gonio-photometer. Journal of Quantitative Spectroscopy and Radiative Transfer, 253, 107155.
[11] Fiorentin, P., Bettanini, C., & Bogoni, D. (2019). Calibration of an autonomous instrument for monitoring light pollution from drones. Sensors, 19(23), 5091.
[12] Elvidge, C. D., Erwin, E. H., Baugh, K. E., Ziskin, D., Tuttle, B. T., Ghosh, T., & Sutton, P. C. (2009, May). Overview of DMSP nightime lights and future possibilities. In 2009 Joint Urban Remote Sensing Event (pp. 1-5). IEEE.
[13] Hsu, F. C., Baugh, K. E., Ghosh, T., Zhizhin, M., & Elvidge, C. D. (2015). DMSP-OLS radiance calibrated nighttime lights time series with intercalibration. Remote Sensing, 7(2), 1855-1876.
[14] Cinzano, P., Falchi, F., & Elvidge, C. D. (2001). The first world atlas of the artificial night sky brightness. Monthly Notices of the Royal Astronomical Society, 328(3), 689-707.
[15] Elvidge, C. D., Baugh, K. E., Kihn, E. A., Kroehl, H. W., & Davis, E. R. (1997). Mapping city lights with nighttime data from the DMSP Operational Linescan System. Photogrammetric Engineering and Remote Sensing, 63(6), 727-734.
[16] Elvidge, C. D., Baugh, K. E., Zhizhin, M., & Hsu, F. C. (2013). Why VIIRS data are superior to DMSP for mapping nighttime lights. Proceedings of the Asia-Pacific Advanced Network, 35(0), 62.
[17] Lee, S., Chiang, K., Xiong, X., Sun, C., & Anderson, S. (2014). The S-NPP VIIRS day-night band on-orbit calibration/characterization and current state of SDR products. Remote Sensing, 6(12), 12427-12446.
[18] Falchi, F., Cinzano, P., Duriscoe, D., Kyba, C. C., Elvidge, C. D., Baugh, K., ... & Furgoni, R. (2016). The new world atlas of artificial night sky brightness. Science advances, 2(6), e1600377.
[19] Levin, N., Johansen, K., Hacker, J. M., & Phinn, S. (2014). A new source for high spatial resolution night time images—The EROS-B commercial satellite. Remote Sensing of Environment, 149, 1-12.
[20] Li, X., Li, X., Li, D., He, X., & Jendryke, M. (2019). A preliminary investigation of Luojia-1 night-time light imagery. Remote sensing letters, 10(6), 526-535.
[21] Pack, D., Hardy, B., & Longcore, T. (2017). Studying the Earth at Night from CubeSats.
[22] Zheng, Q., Weng, Q., Huang, L., Wang, K., Deng, J., Jiang, R., ... & Gan, M. (2018). A new source of multi-spectral high spatial resolution night-time light imagery—JL1-3B. Remote sensing of environment, 215, 300-312.
[23] Castiglione, L., Conticello, S. S., Esposito, M., Oldenhuis, R., Moon, S. G., Nicolai, A., ... & Dettmann, J. (2012, October). The NightPod–An orbital motion compensation mechanism for ISS based imaging. In Proceedings of the 63rd IAC (International Astronautical Congress), Naples, Italy.
[24] de Miguel, A. S., Kyba, C. C., Aubé, M., Zamorano, J., Cardiel, N., Tapia, C., ... & Gaston, K. J. (2019). Colour remote sensing of the impact of artificial light at night (I): The potential of the International Space Station and other DSLR-based platforms. Remote sensing of environment, 224, 92-103.
[25] GYUK, G., GARCIA, J. G., TARR, C., & WALCZAK, K. Light Pollution Mapping from a Stratospheric High-Altitude Balloon Platform.
[26] Kuechly, H. U., Kyba, C. C., Ruhtz, T., Lindemann, C., Wolter, C., Fischer, J., & Hölker, F. (2012). Aerial survey and spatial analysis of sources of light pollution in Berlin, Germany. Remote Sensing of Environment, 126, 39-50.
[27] Hale, J. D., Davies, G., Fairbrass, A. J., Matthews, T. J., Rogers, C. D., & Sadler, J. P. (2013). Mapping lightscapes: spatial patterning of artificial lighting in an urban landscape. PloS one, 8(5), e61460.
[28] Canty, T., Pickett, H. M., Salawitch, R. J., Jucks, K. W., Traub, W. A., & Waters, J. W. (2006). Stratospheric and mesospheric HOx: Results from Aura MLS and FIRS‐2. Geophysical research letters, 33(12).
[29] Crill, B. P., Ade, P. A., Artusa, D. R., Bhatia, R. S., Bock, J. J., Boscaleri, A., ... & Turner, A. D. (2003). Boomerang: A balloon-borne millimeter-wave telescope and total power receiver for mapping anisotropy in the cosmic microwave background. The Astrophysical Journal Supplement Series, 148(2), 527.
[30] Pfotzer, G. (1972). History of the use of balloons in scientific experiments. Space Science Reviews, 13(2), 199-242.
[31] Guzik, T. G., Ellison, S. B., Stewart, M., Wefel, J. P., Pierce, D., & Garde, G. (2011, June). A Multiple Payload Carrier for High Altitude Ballooning. In Academic High Altitude Conference (Vol. 2011, No. 1). Iowa State University Digital Press.
[32] turbide. (2019, August 29). CRAQ researcher Martin Aubé and his students launch a balloon in the stratosphere to better understand light pollution. Center for Research in Astrophysics of Quebec (CRAQ). http://craq-astro.ca/2019/08/29/craq-researcher-martin-aube-and-his-students-launch-a-balloon-in-the-stratosphere-to-better-understand-light-pollution/?lang=en
[33] Walczak, K., Gyuk, G., Kruger, A., Byers, E., & Huerta, S. (2017). Nitesat: a high resolution, full-color, light pollution imaging satellite mission. International Journal of Sustainable Lighting, 19(1), 48-55.
[34] de Miguel, A. S., Castaño, J. G., Zamorano, J., Pascual, S., Ángeles, M., Cayuela, L., ... & Kyba, C. C. (2014). Atlas of astronaut photos of Earth at night. Astronomy & Geophysics, 55(4), 4-36.
Section
Articles