An enhanced version of the Gaia map of the brightness of the natural sky
##plugins.themes.bootstrap3.article.main##
Abstract
The GAia Map of the Brightness Of the Natural Sky (GAMBONS) is a model to map the natural night brightness of the sky in cloudless and moonless nights. It computes the star radiance from the photometric data in Gaia and Hipparcos catalogues, adding the contributions of the diffuse galactic and extragalactic light, zodiacal light and airglow, and taking into account the effects of atmospheric attenuation and scattering. The model allows computing the natural sky brightness in any given photometric band for a ground-based observer, if appropriate transformations from the Gaia bands are available. In this work we present the most recent improvements of the model, including the use of Gaia EDR3 data, the inclusion of a wide set of photometric bands and the derivation of additional sky brightness indicators, as the horizontal irradiance and the average hemispheric radiance.
##plugins.themes.bootstrap3.article.details##
##plugins.themes.bootstrap3.article.details##
light pollution - scattering - radiative transfer - atmospheric effects - instrumentation: photometers - site testing
[2] Gaia Collaboration et al., 2021, A&A, 649, A1
[3] Riello M., et al., 2021, A&A, 649, A3
[4] Bohlin R. C., Gilliland R. L., 2004, AJ, 127, 3508
[5] Oke J. B., Gunn J. E., 1983, ApJ, 266, 713
[6] Johnson H., Morgan W., 1955, Ann. Astrophys, 18, 292
[7] Johnson H. L., 1963, Photometric Systems. p. 204
[8] Cousins A., 1976, Monthly Notes of the Astronomical Society of South Africa, 35, 70
[9] Hänel A., et al., 2018, Journal of Quantitative Spectroscopy and Radiative Transfer, 205, 278
[10] Aceituno J., Sánchez S. F., Aceituno F. J., Galadí-Enríquez D., Negro J. J., Soriguer R. C., Sanchez Gomez G., 2011, PASP, 123, 1076
[11] Linares H., Masana E., Ribas S. J., Aubé M., Simoneau A., Bará S., 2020, J. Quant. Spectrosc. Radiative Transfer, 249, 106990
[12] Jordi C., et al., 2010, A&A, 523, A48
[13] Fukugita M., Ichikawa T., Gunn J. E., Doi M., Shimasaku K., Schneider D. P., 1996, AJ, 111, 1748
[14] Alam S., et al., 2015, ApJS, 219, 12
[15] Kaiser N., et al., 2002, in Tyson J. A., Wolff S., eds, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol. 4836, Survey and Other Telescope Technologies and Discoveries. pp 154–164,
doi:10.1117/12.457365
[16] Ivezi? Ž., et al., 2019, ApJ, 873, 111
[17] Pravettoni M., Strepparava D., Cereghetti N., Klett S., Andretta M., Steiger M., 2016, J. Quant. Spectrosc. Radiative Transfer, 181, 74
[18] Bará S., Tapia C., Zamorano J., 2019, Sensors, 19, 1336
[19] Sánchez de Miguel A., Aubé M., Zamorano J., Kocifaj M., Roby J., Tapia C., 2017, MNRAS, 467, 2966
[20] Zamorano J., García C., Tapia C., Sánchez de Miguel A., Pascual S., Gallego J., 2015, International Journal of Sustainable Lighting, 18, 49
[21] Blackford M., et al., 2016, The AAVSO DSLR Observing Manual. American Association of Variable Star Observers. https://www.aavso.org/sites/default/files/AAVSO_DSLR_Observing_Manual_v1-4.pdf
[22] Cardiel N., et al., 2021, arXiv e-prints, p. arXiv:2103.1700
[23] Dobler G., et al., 2015, Information Systems, 54, 115
[24] Stefanov W. L., Evans C. A., Runco S. K., Wilkinson M. J., Higgins M. D., Willis K., 2017, Astronaut Photography: Handheld Camera Imagery from Low Earth Orbit. p. 847, doi:10.1007/978-3-319-23386-4_39
[25] Kyba C. C. M., Garz S., Kuechly H., De Miguel A. S., Zamorano J., Fischer J., Hölker F., 2015, Remote Sensing, 7, 1
[26] Sánchez de Miguel A., Bará S., Aubé M., Cardiel N., Tapia C. E., Zamorano J., Gaston K. J., 2019a, Journal of Imaging, 5
[27] Sánchez de Miguel A., Kyba C. C., Aubé M., Zamorano J., Cardiel N., Tapia C., Bennie J., Gaston K. J., 2019b, Remote Sensing of Environment, 224, 92
[28] Jechow A., Ribas S. J., Domingo R. C., Hölker F., Kolláth Z., Kyba C. C. M., 2018, J. Quant. Spectrosc. Radiative Transfer, 209, 212
[29] Bertolo A., Binotto R., Ortolani S., Sapienza S., 2019, Journal of Imaging, 5
[30] Kolláth Z., Cool A., Jechow A., Kolláth K., Száz D., Tong K. P., 2020, Journal of Quantitative Spectroscopy and Radiative Transfer, 253, 10716
[31] CIE 1951, Proceedings of the Commission Internationale de l’Éclairage, Vol. 1, Sec 4; Vol 3, p. 37, Bureau Central de la CIE, Paris
[32] CIE 1990, Commission Internationale de l’Éclairage 1988 2· Spectral Luminous Efficiency Function for Photopic Vision
[33] Bará S., Aubé M., Barentine J., Zamorano J., 2020, MNRAS, 493, 2429
[34] Bará S., 2017, International Journal of Sustainable Lighting, 19, No.2
[35] Bará S., Masana E., Carrasco J. M., Ribas S. J., 2021, In preparation.
[36] Bessell M., Murphy S., 2012, PASP, 124, 140
[37] Maiz Apellaniz J., Weiler M., 2018, VizieR Online Data Catalog, pp J/A+A/619/A180
[38] Kocifaj M., Kránicz B., 2011, Lighting Research & Technology, 43, 497
[39] Hong S. S., Kwon S. M., Park Y. S., Park C., 1998, Earth, Planets, and Space, 50, 487
[40] Duriscoe D. M., 2013, PASP, 125, 1370
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
All International Journal of Sustainable Lighting (IJSL) content is Open Access, meaning it is accessible online without fee under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/4.0). For any reuse, redistribution, or reproduction of a work, users must clarify the license terms under which the work was produced. Neither the text itself nor the ideas presented in it may be used for commercial purposes.