Light Pollution Mapping from a Stratospheric High-Altitude Balloon Platform
##plugins.themes.bootstrap3.article.main##
Abstract
The NITELite (Night Imaging of Terrestrial Environments Lite) system is a method of collecting regional-scale light emissions data from a latex high-altitude balloon (LHAB) platform. An LHAB can reach altitudes of 25-30km from where the nighttime imaging is performed. LHAB missions are relatively low cost (<$2000US/flight) and easy to repeat. A NITELite mission collects data with high resolution (<10m/px), color information (RGB) over a region of thousands of square kilometers. This system provides a new source of data for remote sensing of artificial light at night (ALAN) research, filling the data gap between aerial and satellite observations. Nighttime LHAB-based imaging can provide data to support fields of ALAN research such as observation of real-time variability, monitoring effects of seasonal changes and events of interest, and measuring angular dependence of ALAN sources. NITELite includes an imaging system, an inertial and positional recording on-board-computer, and an altitude control system. Preliminary results demonstrate the potential of this method for future ALAN research.
##plugins.themes.bootstrap3.article.details##
##plugins.themes.bootstrap3.article.details##
[2] Owens, A. C., Cochard, P., Durrant, J., Farnworth, B., Perkin, E. K., & Seymoure, B. (2020). Light pollution is a driver of insect declines. Biological Conservation, 241, 108259.
[3] Nadybal, S. M., Collins, T. W., & Grineski, S. E. (2020). Light pollution inequities in the continental United States: A distributive environmental justice analysis. Environmental research, 189, 109959.
[4] Rybnikova, N., & Portnov, B. A. (2020). Testing the generality of economic activity models estimated by merging night-time satellite images with socioeconomic data. Advances in Space Research, 66(11), 2610-2620.
[5] Elvidge, C. D., Baugh, K. E., Kihn, E. A., Kroehl, H. W., & Davis, E. R. (1997). Mapping city lights with nighttime data from the DMSP Operational Linescan System. Photogrammetric Engineering and Remote Sensing, 63(6), 727-734.
[6] Xiao, Q., Gee, G., Jones, R. R., Jia, P., James, P., & Hale, L. (2020). Cross-sectional association between outdoor artificial light at night and sleep duration in middle-to-older aged adults: the NIH-AARP Diet and Health Study. Environmental research, 180, 108823.
[7] Buxton, R. T., Seymoure, B. M., White, J., Angeloni, L. M., Crooks, K. R., Fristrup, K., ... & Wittemyer, G. (2020). The relationship between anthropogenic light and noise in US national parks. Landscape Ecology, 35, 1371-1384.
[8] Kyba, C. C. M., Ruby, A., Kuechly, H. U., Kinzey, B., Miller, N., Sanders, J., ... & Espey, B. (2020). Direct measurement of the contribution of street lighting to satellite observations of nighttime light emissions from urban areas. Lighting Research & Technology, 1477153520958463.
[9] Greenhalgh, J., & Meadows, K. (1999). Th use of patient-based measures of health in improving the process and outcomes of patien review. Journal of Evaluation in Clinical, 416.
[10] Bouroussis, C. A., & Topalis, F. V. (2020). Assessment of outdoor lighting installations and their impact on light pollution using unmanned aircraft systems-The concept of the drone-gonio-photometer. Journal of Quantitative Spectroscopy and Radiative Transfer, 253, 107155.
[11] Fiorentin, P., Bettanini, C., & Bogoni, D. (2019). Calibration of an autonomous instrument for monitoring light pollution from drones. Sensors, 19(23), 5091.
[12] Elvidge, C. D., Erwin, E. H., Baugh, K. E., Ziskin, D., Tuttle, B. T., Ghosh, T., & Sutton, P. C. (2009, May). Overview of DMSP nightime lights and future possibilities. In 2009 Joint Urban Remote Sensing Event (pp. 1-5). IEEE.
[13] Hsu, F. C., Baugh, K. E., Ghosh, T., Zhizhin, M., & Elvidge, C. D. (2015). DMSP-OLS radiance calibrated nighttime lights time series with intercalibration. Remote Sensing, 7(2), 1855-1876.
[14] Cinzano, P., Falchi, F., & Elvidge, C. D. (2001). The first world atlas of the artificial night sky brightness. Monthly Notices of the Royal Astronomical Society, 328(3), 689-707.
[15] Elvidge, C. D., Baugh, K. E., Kihn, E. A., Kroehl, H. W., & Davis, E. R. (1997). Mapping city lights with nighttime data from the DMSP Operational Linescan System. Photogrammetric Engineering and Remote Sensing, 63(6), 727-734.
[16] Elvidge, C. D., Baugh, K. E., Zhizhin, M., & Hsu, F. C. (2013). Why VIIRS data are superior to DMSP for mapping nighttime lights. Proceedings of the Asia-Pacific Advanced Network, 35(0), 62.
[17] Lee, S., Chiang, K., Xiong, X., Sun, C., & Anderson, S. (2014). The S-NPP VIIRS day-night band on-orbit calibration/characterization and current state of SDR products. Remote Sensing, 6(12), 12427-12446.
[18] Falchi, F., Cinzano, P., Duriscoe, D., Kyba, C. C., Elvidge, C. D., Baugh, K., ... & Furgoni, R. (2016). The new world atlas of artificial night sky brightness. Science advances, 2(6), e1600377.
[19] Levin, N., Johansen, K., Hacker, J. M., & Phinn, S. (2014). A new source for high spatial resolution night time images—The EROS-B commercial satellite. Remote Sensing of Environment, 149, 1-12.
[20] Li, X., Li, X., Li, D., He, X., & Jendryke, M. (2019). A preliminary investigation of Luojia-1 night-time light imagery. Remote sensing letters, 10(6), 526-535.
[21] Pack, D., Hardy, B., & Longcore, T. (2017). Studying the Earth at Night from CubeSats.
[22] Zheng, Q., Weng, Q., Huang, L., Wang, K., Deng, J., Jiang, R., ... & Gan, M. (2018). A new source of multi-spectral high spatial resolution night-time light imagery—JL1-3B. Remote sensing of environment, 215, 300-312.
[23] Castiglione, L., Conticello, S. S., Esposito, M., Oldenhuis, R., Moon, S. G., Nicolai, A., ... & Dettmann, J. (2012, October). The NightPod–An orbital motion compensation mechanism for ISS based imaging. In Proceedings of the 63rd IAC (International Astronautical Congress), Naples, Italy.
[24] de Miguel, A. S., Kyba, C. C., Aubé, M., Zamorano, J., Cardiel, N., Tapia, C., ... & Gaston, K. J. (2019). Colour remote sensing of the impact of artificial light at night (I): The potential of the International Space Station and other DSLR-based platforms. Remote sensing of environment, 224, 92-103.
[25] GYUK, G., GARCIA, J. G., TARR, C., & WALCZAK, K. Light Pollution Mapping from a Stratospheric High-Altitude Balloon Platform.
[26] Kuechly, H. U., Kyba, C. C., Ruhtz, T., Lindemann, C., Wolter, C., Fischer, J., & Hölker, F. (2012). Aerial survey and spatial analysis of sources of light pollution in Berlin, Germany. Remote Sensing of Environment, 126, 39-50.
[27] Hale, J. D., Davies, G., Fairbrass, A. J., Matthews, T. J., Rogers, C. D., & Sadler, J. P. (2013). Mapping lightscapes: spatial patterning of artificial lighting in an urban landscape. PloS one, 8(5), e61460.
[28] Canty, T., Pickett, H. M., Salawitch, R. J., Jucks, K. W., Traub, W. A., & Waters, J. W. (2006). Stratospheric and mesospheric HOx: Results from Aura MLS and FIRS?2. Geophysical research letters, 33(12).
[29] Crill, B. P., Ade, P. A., Artusa, D. R., Bhatia, R. S., Bock, J. J., Boscaleri, A., ... & Turner, A. D. (2003). Boomerang: A balloon-borne millimeter-wave telescope and total power receiver for mapping anisotropy in the cosmic microwave background. The Astrophysical Journal Supplement Series, 148(2), 527.
[30] Pfotzer, G. (1972). History of the use of balloons in scientific experiments. Space Science Reviews, 13(2), 199-242.
[31] Guzik, T. G., Ellison, S. B., Stewart, M., Wefel, J. P., Pierce, D., & Garde, G. (2011, June). A Multiple Payload Carrier for High Altitude Ballooning. In Academic High Altitude Conference (Vol. 2011, No. 1). Iowa State University Digital Press.
[32] turbide. (2019, August 29). CRAQ researcher Martin Aubé and his students launch a balloon in the stratosphere to better understand light pollution. Center for Research in Astrophysics of Quebec (CRAQ). http://craq-astro.ca/2019/08/29/craq-researcher-martin-aube-and-his-students-launch-a-balloon-in-the-stratosphere-to-better-understand-light-pollution/?lang=en
[33] Walczak, K., Gyuk, G., Kruger, A., Byers, E., & Huerta, S. (2017). Nitesat: a high resolution, full-color, light pollution imaging satellite mission. International Journal of Sustainable Lighting, 19(1), 48-55.
[34] de Miguel, A. S., Castaño, J. G., Zamorano, J., Pascual, S., Ángeles, M., Cayuela, L., ... & Kyba, C. C. (2014). Atlas of astronaut photos of Earth at night. Astronomy & Geophysics, 55(4), 4-36.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
All International Journal of Sustainable Lighting (IJSL) content is Open Access, meaning it is accessible online without fee under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/4.0). For any reuse, redistribution, or reproduction of a work, users must clarify the license terms under which the work was produced. Neither the text itself nor the ideas presented in it may be used for commercial purposes.