Christopher C. M. Kyba Andrej Mohar Gašper Pintar Jurij Stare


The lighting of the Church of the Three Kings in Logatec, Slovenia was replaced in 2014. The power of the installation was reduced 96% from 1.6 kW to 58 W, and spill light from the site was effectively eliminated. As a result, the church is no longer visible in nighttime satellite images of the area, indicating a reduction of waste light from the site of at least a factor of 30. This article discusses the concept of sustainability with regards to cultural heritage lighting, within the context of this example.




sustainable lighting, light pollution, remote sensing, church lighting, architectural lighting, VIIRS DNB

[1] Robert, K. A., Lesku, J. A., Partecke, J., & Chambers, B. (2015, October). Artificial light at night desynchronizes strictly seasonal reproduction in a wild mammal. In Proc. R. Soc. B (Vol. 282, No. 1816, p. 20151745). The Royal Society.

[2] Raap, T., Casasole, G., Pinxten, R., & Eens, M. (2016). Early life exposure to artificial light at night affects the physiological condition: An experimental study on the ecophysiology of free-living nestling songbirds. Environmental Pollution, 218, 909-914.

[3] Brüning, A., Hölker, F., Franke, S., Kleiner, W., & Kloas, W. (2018). Influence of light intensity and spectral composition of artificial light at night on melatonin rhythm and mRNA expression of gonadotropins in roach Rutilus rutilus. Fish Physiology and Biochemistry, 44(1), 1-12.

[4] Lunn, R. M., Blask, D. E., Coogan, A. N., Figueiro, M. G., Gorman, M. R., Hall, J. E., ... & Stevens, R. G. (2017). Health consequences of electric lighting practices in the modern world: A report on the National Toxicology Program's workshop on shift work at night, artificial light at night, and circadian disruption. Science of The Total Environment, 607, 1073-1084.

[5] Perkin, E. K., Hölker, F., & Tockner, K. (2014). The effects of artificial lighting on adult aquatic and terrestrial insects. Freshwater Biology, 59(2), 368-377.

[6] Firebaugh, A., & Haynes, K. J. (2016). Experimental tests of light-pollution impacts on nocturnal insect courtship and dispersal. Oecologia, 182(4), 1203-1211.

[7] Ouyang, J. Q., Jong, M., Grunsven, R. H., Matson, K. D., Haussmann, M. F., Meerlo, P., ... & Spoelstra, K. (2017). Restless roosts: Light pollution affects behavior, sleep, and physiology in a free?living songbird. Global Change Biology.

[8] Van Doren, B. M., Horton, K. G., Dokter, A. M., Klinck, H., Elbin, S. B., & Farnsworth, A. (2017). High-intensity urban light installation dramatically alters nocturnal bird migration. Proceedings of the National Academy of Sciences, 201708574.

[9] Johnston, D. W., & Haines, T. P. (1957). Analysis of mass bird mortality in October, 1954. The Auk, 74(4), 447-458.

[10] Salmon, M., Tolbert, M. G., Painter, D. P., Goff, M., & Reiners, R. (1995). Behavior of loggerhead sea turtles on an urban beach. II. Hatchling orientation. Journal of Herpetology, 568-576.

[11] Eisenbeis, G. (2006). Artificial night lighting and insects: attraction of insects to streetlamps in a rural setting in Germany. Ecological consequences of artificial night lighting, 2, 191-198.

[12] Rodríguez, A., Holmes, N. D., Ryan, P. G., Wilson, K. J., Faulquier, L., Murillo, Y., ... & Le Corre, M. (2017). Seabird mortality induced by land-based artificial lights. Conservation Biology, 31, 986–1001.

[13] Gaston, K. J., Visser, M. E., & Hölker, F. (2015). The biological impacts of artificial light at night: the research challenge.

[14] Somers-Yeates, R., Bennie, J., Economou, T., Hodgson, D., Spalding, A., & McGregor, P. K. (2016, June). Light pollution is associated with earlier tree budburst across the United Kingdom. In Proc. R. Soc. B (Vol. 283, No. 1833, p. 20160813). The Royal Society.

[15] Knop, E., Zoller, L., Ryser, R., Gerpe, C., Hörler, M., & Fontaine, C. (2017). Artificial light at night as a new threat to pollination. Nature, 548(7666), 206-209.
[16] Falchi, F., Cinzano, P., Duriscoe, D., Kyba, C. C., Elvidge, C. D., Baugh, K., ... & Furgoni, R. (2016). The new world atlas of artificial night sky brightness. Science Advances, 2(6), e1600377.
[17] Kyba, C.C.M., Kuester, T., de Miguel, A.S., Baugh, K., Jechow, A., Hölker, F., Bennie, J., Elvidge, C.D., Gaston, K.J., Guanter, L. (2017). Artificially lit surface of Earth at night increasing in radiance and extent. Science Advances, 3(11), e1701528.
[18] Kuechly, H. U., Kyba, C. C., Ruhtz, T., Lindemann, C., Wolter, C., Fischer, J., & Hölker, F. (2012). Aerial survey and spatial analysis of sources of light pollution in Berlin, Germany. Remote Sensing of Environment, 126, 39-50.
[19] Jechow, A., Ribas, S. J., Domingo, R. C., Hölker, F., Kolláth, Z., & Kyba, C. C. (2018). Tracking the dynamics of skyglow with differential photometry using a digital camera with fisheye lens. Journal of Quantitative Spectroscopy and Radiative Transfer, 209, 212–223.
[20] Rydell, J., Eklöf, J., & Sánchez-Navarro, S. (2017). Age of enlightenment: long-term effects of outdoor aesthetic lights on bats in churches. Royal Society Open Science, 4(8), 161077.

[21] Jež, M., Zakšek, V., Štanta, R., Zadravec, B, Verovnik, R. (2015) Favna no?nih metuljev (Lepidoptera) na izbranih osvetljenih cerkvah v Sloveniji. Natura Sloveniae, 17(2), 17-45.

[22] Verovnik, R., Fišer, Ž., & Zakšek, V. (2015). How to reduce the impact of artificial lighting on moths: A case study on cultural heritage sites in Slovenia. Journal for Nature Conservation, 28, 105-111.

[23] Mohar A., Zagmajster, M., Verovnik, R., Skaberne, B.B., (2014). Nature-friendlier lighting of objects of cultural heritage (churches) - Recommendations. Life+ project brochure. URL:
http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=home.showFile&rep=file&fil=LifeatNight_Recommendations_EN.pdf (Access date 11 October 2017).

[24] Elvidge, C. D., Baugh, K., Zhizhin, M., Hsu, F. C., & Ghosh, T. (2017). VIIRS night-time lights. International Journal of Remote Sensing, 38(21), 5860-5879.

[25] Kyba, C., Garz, S., Kuechly, H., de Miguel, A.S., Zamorano, J., Fischer, J., & Hölker, F. (2015). High-resolution imagery of Earth at night: new sources, opportunities and challenges. Remote sensing, 7(1), 1-23.

[26] Aubé, M., & Kocifaj, M. (2012). Using two light-pollution models to investigate artificial sky radiances at Canary Islands observatories. Monthly Notices of the Royal Astronomical Society, 422(1), 819-830.

[27] Bará, S., Espey, B., Falchi, F., Kyba, C. C. M., & Nievas Rosillo, M. (2015). Report of the 2014 LoNNe intercomparison campaign. URL: http://eprints. ucm. es/32989/(Accessed 13 May 2016).

[28] Hänel, A., Posch, T., Ribas, S. J., Aubé, M., Duriscoe, D., Jechow, A., ... & Spoelstra, H. (2018). Measuring night sky brightness: methods and challenges. Journal of Quantitative Spectroscopy and Radiative Transfer, 205, 278-290.
[29] Kim, J.T., Beu, D (2015) Why an International Journal of Sustainable Lighting? Int J Sustain Light 34, p. 3-4.
[30] Narendran, N., Freyssinier, J. P., & Zhu, Y. (2016). Energy and user acceptability benefits of improved illuminance uniformity in parking lot illumination. Lighting Research & Technology, 48(7), 789-809.
[31] Fotios, S., Cheal, C., Fox, S., & Uttley, J. (2017). The transition between lit and unlit sections of road and detection of driving hazards after dark. Lighting Research & Technology, 1477153517725775.

[32] Mohar A., (2011 October). Importance of nearby lighting on light pollution. Talk at the 11th European Symposium for the Protection of the Night Sky. Osnabrück, Germany. URL: http://www.lichtverschmutzung.de/symposium_2011/zubehoer/download.php?sub=friday_aftern_sess1&file=05_Mohar.pdf