Direct assessment of the sensitivity drift of SQM sensors installed outdoors
##plugins.themes.bootstrap3.article.main##
Abstract
Long-term monitoring of the evolution of the artificial night sky brightness is a key tool for developing science-informed public policies and assessing the efficacy of light pollution mitigation measures. Detecting the underlying artificial brightness trend is a challenging task, since the typical night sky brightness signal shows a large variability with characteristic time scales ranging from seconds to years. In order to effectively isolate the weak signature of the effect of interest, determining the potential long term drifts of the radiance sensing systems is crucial. If these drifts can be adequately characterized, the raw measurements could be easily corrected for them and transformed to a consistent scale. In this short note we report on the progressive darkening of the signal recorded by SQM detectors belonging to several monitoring networks, permanently installed outdoors for periods ranging from several months to several years. The sensitivity drifts were estimated by means of parallel measurements made at the beginning and at the end of the evaluation periods using reference detectors of the same kind that were little or no exposed to weathering in the intervening time. Our preliminary results suggest that SQM detectors installed outdoors steadily increase their readings at an average rate of +0.034 magSQM/arcsec2 per MWh/m2 of exposure to solar horizontal global irradiation, that for our locations translates into approximately +0.05 to +0.06 magSQM/arcsec2 per year.
##plugins.themes.bootstrap3.article.details##
##plugins.themes.bootstrap3.article.details##
sustainable lighting, light pollution, monitoring, radiometry, photometry
[2] Bará ,S., Lima, R.C., Zamorano, J. (2019). Monitoring long-term trends in the anthropogenic brightness of the night sky. Sustainability 11, 3070.: https://doi.org/10.3390/su11113070
[3] Ribas, S.J., Canal-Domingo, R., Linares, H. (2019). Informe de la campanya de seguiment de la qualitat del cel nocturn del territori Starlight del Montsec i zones protegides de Catalunya" Technical Report 2019
[4] Schmidt, W., Spoelstra, H. (2020). Darkness monitoring in the Netherlands, 2009-2019. NachtMeetnet Report R2020-01, November 2020. https://doi.org/10.5281/zenodo.4293366
[5] Barentine, J.C., Walker, C.E., Kocifaj, M., Kundracik, F., Juan, A., Kanemoto, J., Monrad, C.K. (2018). Skyglow changes over Tucson, Arizona, resulting from a municipal LED street lighting conversion. Journal of Quantitative Spectroscopy & Radiative Transfer 212,10–23. https://doi.org/10.1016/j.jqsrt.2018.02.038
[6] Estrada-García, R., García-Gil, M., Acosta, L., Bará, S., Sanchez-de-Miguel, A., Zamorano, J. (2016). Statistical modelling and satellite monitoring of upward light from public lighting. Lighting Research & Technology 48(7), 810-822. https://doi.org/10.1177/1477153515583181
[7] Sánchez de Miguel, A. (2015). Variación espacial, temporal y espectral de la contaminación lumínica y sus fuentes: Metodología y resultados. PhD dissertation, Universidad Complutense de Madrid (Spain) https://doi.org/10.13140/RG.2.1.2233.7127
[8] Sánchez de Miguel, A., Aubé, M., Zamorano, J., Kocifaj, M., Roby, J., Tapia, C. (2017). Sky Quality Meter measurements in a colour-changing world. Monthly Notices of the Royal Astronomical Society 467(3), 2966-2979. https://doi.org/10.1093/mnras/stx145
[9] Bará, S., Rigueiro, I., Lima, RC. (2019). Monitoring transition: expected night sky brightness trends in different photometric bands. Journal of Quantitative Spectroscopy and Radiative Transfer, 239, 106644. https://doi.org/10.1016/j.jqsrt.2019.106644
[10] Cinzano P. (2005). Night Sky Photometry with Sky Quality Meter. Internal Report No.9, v.1.4. Istituto di Scienza e Tecnologia dell'Inquinamento Luminoso (ISTIL).
[11] Pravettoni, M., Strepparava, D., Cereghetti, N., Klett, S., Andretta, M., Steiger, M. (2016). Indoor calibration of Sky Quality Meters: Linearity, spectral responsivity and uncertainty analysis. Journal of Quantitative Spectroscopy and Radiative Transfer 181, 74–86.
[12] Bará, S., Tapia, C.E., Zamorano, J. (2019). Absolute Radiometric Calibration of TESS-W and SQM Night Sky Brightness Sensors, Sensors 19(6), 1336. https://doi.org/10.3390/s19061336
[13] Ribas, S.J. (2016). Caracterització de la contaminació lumínica en zones protegides i urbanes. PhD Dissertation, Universitat de Barcelona. https://www.tdx.cat/handle/10803/396095
[14] Generalitat de Catalunya, Departament de Territori i Sostenibilitat (2019). Avaluació de la qualitat del cel nocturn (Night sky assessment). http://mediambient.gencat.cat/ca/05_ambits_dactuacio/atmosfera/contaminacio_luminica/avaluacio-qualitat-cel-nocturn/
[15] Spanish Network for Light Pollution Studies (2020). https://guaix.fis.ucm.es/reecl/SQM-REECL
[16] MeteoGalicia. (2020) Brillo do ceo Nocturno. https://www.meteogalicia.gal/Caire/brillodoceo.action
[17] Ribas, S.J., Torra, J., Figueras, F., Paricio, S., Canal-Domingo, R. (2016). How Clouds are Amplifying (or not) the Effects of ALAN. International Journal of Sustainable Lighting 35, 32-39. https://doi.org/10.22644/ijsl.2016.35.1.032
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
All International Journal of Sustainable Lighting (IJSL) content is Open Access, meaning it is accessible online without fee under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/4.0). For any reuse, redistribution, or reproduction of a work, users must clarify the license terms under which the work was produced. Neither the text itself nor the ideas presented in it may be used for commercial purposes.