##plugins.themes.bootstrap3.article.main##

Salvador Bará Fabio Falchi Raul C. Lima Martin Pawley

Abstract

Could we enjoy starry skies in our cities again? Arguably yes. The actual number of visible stars will depend, among other factors, on the spatial density of the overall city light emissions. In this paper it is shown that reasonably dark skies could be achieved in urban settings, even at the center of large metropolitan areas, if the light emissions are kept within admissible levels and direct glare from the light sources is avoided. These results may support the adoption of science-informed, democratic public decisions on the use of light in our municipalities, with the goal of recovering the possibility of contemplating the night sky everywhere in our planet.


 


 

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

sustainable lighting, light pollution, sky brightness, radiometry, photometry

References
[1] Marín, C. & Jafari, J. (2008). StarLight: A Common Heritage; StarLight Initiative La Palma Biosphere Reserve, Instituto De Astrofísica De Canarias, Government of The Canary Islands, Spanish Ministry of The Environment, UNESCO-MaB: Canary Islands, Spain.
[2] Starlight Foundation. (2015). List of Starlight Tourist Destinations. https://fundacionstarlight.org/en/section/list-of-starlight-tourist-destinations/293.html (last accessed May 15, 2021)
[3] International Dark-Sky Association. (2021). International Dark Sky Places conservation program https://www.darksky.org/our-work/conservation/idsp/ (last accesssed July 7, 2021)
[4] Blundell, E., Schaffer, V., & Moyle, B. D. (2020). Tourism Recreation Research, 45(4), 549-556, doi: 10.1080/02508281.2020.1782084
[5] Kanianska, R., Škvareninová, J., & Kaniansky, S. (2020). Landscape Potential and Light Pollution as Key Factors for Astrotourism Development: A Case Study of a Slovak Upland Region. Land, 9, 374. doi:10.3390/land9100374
[6] Mitchell, D., & Gallaway, T. (2019). Dark sky tourism: economic impacts on the Colorado Plateau Economy, USA. Tourism Review, 74(4), 930-942. doi: 10.1108/TR-10-2018-0146
[7] Paül, V., Trillo-Santamaría, J. M., Haslam-Mckenzie, F. (2019). The invention of a mountain tourism destination: An exploration of Trevinca-A Veiga (Galicia, Spain). Tourist Studies, 19(3), 313-335. doi:10.1177/1468797619833364
[8] Weaver, D. (2011). Celestial ecotourism: new horizons in nature-based tourism, Journal of Ecotourism, 10(1), 38-45, doi: 10.1080/14724040903576116
[9] Kyba, C. C. M., Kuester, T., Sánchez de Miguel, A., Baugh, K., Jechow, A., Hölker, F., Bennie, J., Elvidge, C. D., Gaston, K. J., & Guanter, L. (2017). Artificially lit surface of Earth at night increasing in radiance and extent. Sci. Adv. 3, e1701528. doi: 10.1126/sciadv.1701528
[10] Falchi, F., Cinzano, P., Duriscoe, D., Kyba, C. C. M., Elvidge, C. D., Baugh, K., Portnov, B. A., Rybnikova, N. A., & Furgoni, R. (2016). The new world atlas of artificial night sky brightness. Sci. Adv. 2, e1600377, doi: 10.1126/sciadv.1600377
[11] Gaston, K. J., Duffy, J. P., & Bennie, J. (2015), Quantifying the erosion of natural darkness in the global protected area system. Conservation Biology, 29, 1132-1141. doi:10.1111/cobi.12462
[12] Davies, T.W., Duffy, J.P., Bennie, J., & Gaston, K.J. (2016). Stemming the Tide of Light Pollution Encroaching into Marine Protected Areas. Conservation Letters 29(3),164–171. doi: 10.1111/conl.12191
[13] Ditmer, M. A., Stoner, D. C., & Carter, N. H. (2021). Estimating the loss and fragmentation of dark environments in mammal ranges from light pollution. Biological Conservation, 257, 109135. doi: 10.1016/j.biocon.2021.109135.
[14] Fotios, S., Gibbons, R. (2018). Road lighting research for drivers and pedestrians: The basis of luminance and illuminance recommendations. Lighting Research & Technology, 50(1), 154-186. doi:10.1177/1477153517739055
[15] Marchant, P. (2005). Shining a light on evidence-based policy: street lighting and crime. Criminal Justice Matters, 62(1), 18-45. di: 10.1080/09627250508553093
[16] Marchant, P. (2010). What is the contribution of street lighting to keeping us safe? An investigation into a policy. Radic. Stat., 102, 32–42. http://www.radstats.org.uk/no102/Marchant102.pdf.
[17] Marchant P. (2017). Why Lighting Claims Might Well Be Wrong. International Journal of Sustainable Lighting, 19, 69-74. doi: 10.26607/ijsl.v19i1.71
[18] Marchant P. (2019) Do brighter, whiter street lights improve road safety? Significance, 16(5), 8-9. doi: 10.1111/j.1740-9713.2019.01313.x
[19] Marchant P., Hale, J. D., Sadler, J. P. J (2020). Does changing to brighter road lighting improve roadsafety? Multilevel longitudinal analysis of road traffic collision frequency during the relighting of a UK city. Epidemiol Community Health, 74,467–472. doi:10.1136/jech-2019-212208
[20] Marchant P. (2020). Bad Science: Comments on the paper ‘Quantifying the impact of road lighting on road safety — A New Zealand Study’ by Jackett & Frith (2013). World Transport Policy and Practice, 26(2), 10-20.
[21] Bará, S., Falchi, F., Lima, R. C., Pawley, M. (2021) Keeping light pollution at bay: a red-lines, target values, top-down approach. Environmental Challenges (in press)
[22] Frisby, J. P., & Stone, J. V. (2010). Seeing: The Computational Approach to Biological Vision, 2nd. Ed., MIT Press.
[23] Navarro, R., & Losada, M. A. (1997). Shape of stars and optical quality of the human eye. Journal of the Optical Society of America A, 14, 353-359.
[24] Thibos, L.N., Hong, X., Bradley, A., & Cheng, X. (2002). Statistical variation of aberration structure and image quality in a normal population of healthy eyes. Journal of the Optical Society of America A, 19(12), 2329-2348.
[25] Blackwell, H. R. (1946). Contrast Thresholds of the Human Eye. Journal of the Optical Society of America, 36(11), 624-643. doi: 10.1364/JOSA.36.000624
[26] Masana, E., Carrasco, J. M., Bará, S., & Ribas, S.J. (2021). A multi-band map of the natural night sky brightness including Gaia and Hipparcos integrated starlight. Monthly Notices of the Royal Astronomical Society, 501, 5443–5456. doi 10.1093/mnras/staa4005
[27] Cinzano, P., & Falchi, F. (2020). Toward an atlas of the number of visible stars. Journal of Quantitative Spectroscopy & Radiative Transfer, 253, 107059. doi: 10.1016/j.jqsrt.2020.107059
[28] GAMBONS, The GAia Map of the Brightness Of Natural Sky. https://gambons.fqa.ub.edu/ (Last accessed July 7, 2021)
[29] van den Berg, T. J. T. P., Franssen, L., & Coppens, J. E. (2010). Ocular Media Clarity and Straylight. In Darlene A. Dartt (ed), Encyclopedia of the Eye, Vol 3. Oxford:Academic Press; pp. 173-183.
[30] van den Berg, T. J. T. P., Franssen, L., Kruijt, B., & Coppens, J. E. (2013). History of ocular straylight measurement: A review. Z. Med. Phys., 23, 6–20. doi: 10.1016/j.zemedi.2012.10.009
[31] Kocifaj, M., Kundracik, F., Barentine, J. C., Bará, S. (2021). The proliferation of space objects is a rapidly increasing source of artificial night sky brightness. Monthly Notices of the Royal Astronomical Society Letters, 504, L40–L44. doi:10.1093/mnrasl/slab030
[32] Schaefer, B.E. (1990). Telescopic limiting magnitudes, Publications of the Astronomical Society of the Pacific, 102, 212-229.
[33] Schaefer, B.E. (1991). Glare and Celestial Visibility, Publications of the Astronomical Society of the Pacific, 103, 645-660.
[34] Schaefer, B.E. (1993). Astronomy and the Limits of Vision. Vistas in Astronomy, 36, 311- 361. doi:10.1016/0083-6656(93)90113-X
[35] Upgren, A. R. (1991). Night-sky brightness from the visibility of stars near the horizon. Publications of the Astronomical Society of the Pacific, 103, 1292-1295.
[36] Cinzano, P., Falchi, F., Elvidge, C. D. (2001). Naked-eye star visibility and limiting magnitude mapped from DMSP-OLS satellite data. Mon. Not. R. Astron. Soc., 323, 34–46
[37] Crumey, A. (2014). Human contrast threshold and astronomical visibility. Mon. Not. R. Astron. Soc., 442, 2600–2619. doi:10.1093/mnras/stu992
[38] Bessell, M.S. (1990). UBVRI passbands. Publications of the Astronomical Society of the Pacific, 102, 1181-1199.
[39] Bessell, M., Murphy, S. (2012). Spectrophotometric Libraries, Revised Photonic Passbands, and Zero Points for UBVRI, Hipparcos, and Tycho Photometry. Pub Astr Soc Pac, 124, 140–157.
[40] CIE, Commision Internationale de l'Éclairage. (1990). CIE 1988 2° SpectralLuminous Efficiency Function for Photopic Vision. CIE 86:1990. Vienna: Bureau Central de la CIE.
[41] CIE, Commission Internationale de l’Éclairage (1951). Proceedings Vol. 1, Sec 4; Vol 3, p. 37. Paris: Bureau Central de la CIE.
[42] CIE, Commission Internationale de l’Éclairage. (2010). Recommended system for mesopic photometry based on visual performance. CIE 191:2010.
[43] Maksimainen, M., Kurkela, M., Bhusal, P., & Hyyppä, H. (2019). Calculation of Mesopic Luminance Using per Pixel S/P Ratios Measured with Digital Imaging, LEUKOS, 15(4), 309-317. doi: 10.1080/15502724.2018.1557526
[44] Cardiel, N., Zamorano, J., Bará, S., et al. (2021). Synthetic RGB photometry of bright stars: definition of the standard photometric system and UCM library of spectrophotometric spectra. Monthly Notices of the Royal Astronomical Society, 504(3), 3730-3748. doi: 10.1093/mnras/stab997
[45] Hänel, A., Posch, T., Ribas, S. J., et al. (2018). Measuring night sky brightness: methods and challenges. Journal of Quantitative Spectroscopy & Radiative Transfer, 205, 278–290. doi:10.1016/j.jqsrt.2017.09.008
[46] Bará, S., Aubé, M., Barentine, J., & Zamorano, J. (2020). Magnitude to luminance conversions and visual brightness of the night sky. Monthly Notices of the Royal Astronomical Society, 493, 2429–2437. doi: 10.1093/mnras/staa323
[47] Fryc, I., Bará, S., Aubé, M., Barentine, J. C. & Zamorano, J. (2021). On the Relation between the Astronomical and Visual Photometric Systems in Specifying the Brightness of the Night Sky for Mesopically Adapted Observers, LEUKOS, doi:10.1080/15502724.2021.1921593
[48] Duriscoe, D. M. (2016). Photometric indicators of visual night sky quality derived from all-sky brightness maps. Journal of Quantitative Spectroscopy & Radiative Transfer, 181, 33–45. doi: 10.1016/j.jqsrt.2016.02.022
[49] Duriscoe, D. M., Anderson, S. J., Luginbuhl, C. B., & Baugh, K. E. (2018). A simplified model of all-sky artificial sky glow derived from VIIRS Day/Night band data. Journal of Quantitative Spectroscopy & Radiative Transfer, 214, 133–145. doi: 10.1016/j.jqsrt.2018.04.028
[50] Falchi, F., & Bará, S. (2021). Computing light pollution indicators for environmental assessment. Nat Sci. e10019. doi: 10.1002/ntls.10019
[51] Garstang, R. H. (1989). Night-sky brightness at observatories and sites. PASP 101, 306. doi:10.1086/132436
[52] Cinzano, P., & Falchi, F. (2012).The propagation of light pollution in the atmosphere. Monthly Notices of the Royal Astronomical Society 427(4), 3337–3357. doi: 10.1111/j.1365-2966.2012.21884.x
[53] Aubé, M., & Simoneau, A. (2018). New features to the night sky radiance model illumina: Hyperspectral support, improved obstacles and cloud reflection. Journal of Quantitative Spectroscopy and Radiative Transfer, 211, 25–34. doi: 10.1016/j.jqsrt.2018.02.033
[54] Kocifaj, M. (2007). Light-pollution model for cloudy and cloudless night skies with ground-based light sources. Appl Opt 46(15), 3013. doi: 10.1364/AO.46.003013
[55] Kocifaj, M. (2018). Multiple scattering contribution to the diffuse light of a night sky: A model which embraces all orders of scattering. Journal of Quantitative Spectroscopy and Radiative Transfer, 206, 260–72. doi: 10.1016/j.jqsrt.2017.11.020
[56] Bará, S., Rigueiro, I., & Lima, R. C. (2019). Monitoring transition: Expected night sky brightness trends in different photometric bands. Journal of Quantitative Spectroscopy and Radiative Transfer, 239, 106644. doi: 10.1016/j.jqsrt.2019.106644
[57] Aubé, M., Simoneau, A., Muñoz-Tuñón, C., Díaz-Castro, J., & Serra-Ricart, M. (2020). Restoring the night sky darkness at Observatorio del Teide: First application of the model Illumina version 2. Monthly Notices of the Royal Astronomical Society, 497(3), 2501–2516. doi: 10.1093/mnras/staa2113
[58] Simoneau, A., Aubé, M., Leblanc, J., Boucher, R., Roby, J., & Lacharité, F. (2021). Point spread functions for mapping artificial night sky luminance over large territories, Monthly Notices of the Royal Astronomical Society, 504(1), 951–963. doi: 10.1093/mnras/stab681
[59] Bará, S., & Lima, R. C. (2018). Photons without borders: quantifying light pollution transfer between territories, International Journal of Sustainable Lighting 20(2), 51-61. doi:10.26607/ijsl.v20i2.87
[60] Falchi, F., & Bará, S. (2020). A linear systems approach to protect the night sky: implications for current and future regulations. R.Soc. Open Sci., 7,201501. doi: 10.1098/rsos.201501
[61] Oke, J. B. (1974). Absolute spectral energy distributions for white dwarfs. The Astrophysical Journal Suppl. Series 236(27), 21-35.
Section
Articles