Photons without borders: quantifying light pollution transfer between territories
##plugins.themes.bootstrap3.article.main##
Abstract
The light pollution levels experienced at any given site generally depend on a wide number of artificial light sources distributed throughout the surrounding territory. Since photons can travel long distances before being scattered by the atmosphere, any effective proposal for reducing local light pollution levels needs an accurate assessment of the relative weight of all intervening light sources, including those located tens or even hundreds of km away. In this paper we describe several ways of quantifying and visualizing these relative weights. Particular emphasis is made on the aggregate contribution of the municipalities, which are -in many regions of the world- the administrative bodies primarily responsible for the planning and maintenance of public outdoor lighting systems
##plugins.themes.bootstrap3.article.details##
##plugins.themes.bootstrap3.article.details##
light pollution, light intrusion, sky brightness, photometry;
[2] Garstang, R. H. (1989). Night-sky brightness at observatories and sites. Publications of the Astronomical Society of the Pacific, 101, 306-329.
[3] Cinzano P., Falchi F., Elvidge C. D. (2001). Naked-eye star visibility and limiting magnitude mapped from DMSP-OLS satellite data, Mon. Not. R. Astron. Soc. 323, 34–46
[4] Cinzano P., Falchi F., Elvidge, C. (2001). The first world atlas of the artificial night sky brightness, Mon. Not. R. Astron. Soc., 328, 689–707
[5] Cinzano P., Elvidge C. D. (2004). Night sky brightness at sites from DMSP-OLS satellite measurements, Mon. Not. R. Astron. Soc. 353, 1107–1116 doi:10.1111/j.1365-2966.2004.08132.x
[6] Kocifaj M. (2007). Light-pollution model for cloudy and cloudless night skies with ground-based light sources, Applied Optics 46, 3013-3022
[7] Cinzano P., Falchi F. (2012). The propagation of light pollution in the atmosphere, Mon. Not. R. Astron. Soc. 427, 3337–3357. doi:10.1111/j.1365-2966.2012.21884.x
[8] Aubé M. (2015). Physical behaviour of anthropogenic light propagation into the nocturnal environment, Phil. Trans. R. Soc. B 370:20140117. doi: 10.1098/rstb.2014.0117
[9] Falchi F., Cinzano P., Duriscoe D., Kyba C.C.M., Elvidge C.D., Baugh K., Portnov B.A., Rybnikova N.A., Furgoni R. (2016). The new world atlas of artificial night sky brightness, Sci. Adv. 2, e1600377, doi: 10.1126/sciadv.1600377
[10] Kocifaj M. (2016). A review of the theoretical and numerical approaches to modeling skyglow: Iterative approach to RTE, MSOS, and two-stream approximation, Journal of Quantitative Spectroscopy & Radiative Transfer 181, 2–10
[11] Solano Lamphar H. A., Kocifaj M. (2016). Urban night-sky luminance due to different cloud types: A numerical experiment, Lighting Res. Technol., 48, 1017–1033, doi: 10.1177/1477153515597732
[12 ] Aubé M., Simoneau A. (2018). New features to the night sky radiance model illumina: Hyperspectral support, improved obstacles and cloud reflection, Journal of Quantitative Spectroscopy and Radiative Transfer 211, 25-34, https://doi.org/10.1016/j.jqsrt.2018.02.033
[13] Bará S. (2018). Characterizing the zenithal night sky brightness in large territories: How many samples per square kilometer are needed?, Mont. Not. R. Astron. Soc. 473, 4164–4173, https://doi.org/10.1093/mnras/stx2571
[14] Duriscoe, D.M., Anderson, S.J., Luginbuhl, C.B., and Baugh, K.E. (2018). A simplified model of all-sky artificial sky glow derived from VIIRS Day/Night band data. Journal of Quantitative Spectroscopy & Radiative Transfer, 214, 133–145. DOI: 10.1016/j.jqsrt.2018.04.028
[15] Kocifaj M. (2018). Towards a comprehensive city emission function (CCEF), Journal of Quantitative Spectroscopy and Radiative Transfer, 205, 253-266. https://doi.org/10.1016/j.jqsrt.2017.10.006
[16] Kocifaj M. (2018). Multiple scattering contribution to the diffuse light of a night sky: A model which embraces all orders of scattering, Journal of Quantitative Spectroscopy and Radiative Transfer 206, 260-272 https://doi.org/10.1016/j.jqsrt.2017.11.020
[17] Linares H., Masana E., Ribas S.J., Garcia-Gil M., Figueras F., Aubé M. (2018). Modelling the night sky brightness and light pollution sources of Montsec protected area, Journal of Quantitative Spectroscopy and Radiative Transfer 217, 178-188 https://doi.org/10.1016/j.jqsrt.2018.05.037
[18] Netzel H., Netzel P. (2018). High-resolution map of light pollution, Journal of Quantitative Spectroscopy and Radiative Transfer (in press) doi:10.1016/j.jqsrt.2018.05.038
[19] Solano-Lamphar H.A. (2018). The emission function of ground-based light sources: State of the art and research challenges, Journal of Quantitative Spectroscopy and Radiative Transfer 211, 35-43, doi:10.1016/j.jqsrt.2018.02.034
[20] Earth Observation Group, NOAA National Geophysical Data Center. (2018). Version 1 VIIRS Day/Night Band Nighttime Lights, available online at https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html (last accessed, July 6, 2018)
[21] Baugh K., Hsu F.C., Elvidge C.D., Zhizhin M. (2013). Nighttime Lights Compositing Using the VIIRS Day-Night Band: Preliminary Results, Proceedings of the Asia-Pacific Advanced Network 2013 v. 35, p. 70-86, doi: 10.7125/APAN.35.8
[22] Elvidge C.D., Baugh K., Zhizhin M, Hsu F.C. (2013). Why VIIRS data are superior to DMSP for mapping nighttime lights, Proceedings of the Asia-Pacific Advanced Network 2013 v. 35, p. 62-69. doi:10.7125/APAN.35.7
[23] Cao C., Bai Y. (2014). Quantitative Analysis of VIIRS DNB Nightlight Point Source for Light Power Estimation and Stability Monitoring, Remote Sens. 6, 11915-11935, doi:10.3390/rs61211915
[24] Kyba C.C.M., Garz S., Kuechly H., Sánchez de Miguel A., Zamorano J., Fischer J., Hölker F. (2015). High-Resolution Imagery of Earth at Night: New Sources, Opportunities and Challenges, Remote Sens. 7, 1-23, doi:10.3390/rs70100001
[25] Elvidge C.D., Baugh K., Zhizhin M, Hsu F.C., Ghosh T. (2017). VIIRS night-time lights, International Journal of Remote Sensing, doi: 10.1080/01431161.2017.1342050
[26] Duriscoe, D.M. (2016). Photometric indicators of visual night sky quality derived from all-sky brightness maps. Journal of Quantitative Spectroscopy & Radiative Transfer, 181, 33–45. DOI:10.1016/j.jqsrt.2016.02.022
[27] QGIS: A Free and Open Source Geographic Information System. https://qgis.org/en/site/
[28] Starlight Foundation. (2015). List of Starlight Tourist Destinations. https://fundacionstarlight.org/en/section/list-of-starlight-tourist-destinations/293.html (last accessed, Sept. 10, 2018)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
All International Journal of Sustainable Lighting (IJSL) content is Open Access, meaning it is accessible online without fee under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/4.0). For any reuse, redistribution, or reproduction of a work, users must clarify the license terms under which the work was produced. Neither the text itself nor the ideas presented in it may be used for commercial purposes.