##plugins.themes.bootstrap3.article.main##

Salvador Bará Carmen Bao-Varela

Abstract

The visual perception of the natural night sky in many places of the world is strongly disturbed by anthropogenic light. Part of this artificial light is scattered in the atmosphere and propagates towards the observer, adding to the natural brightness and producing a light polluted sky. However, atmospheric scattering is not the only mechanism contributing to increase the visual skyglow. The rich and diverse biological media forming the human eye also scatter light very efficiently and contribute, in some cases to a big extent, to the total sky brightness detected by the retinal photoreceptors. In this paper we quantify this effect and assess its relevance when the eye pupil is illuminated by light sources within the visual field. Our results show that intraocular scattering constitutes a significant part of the perceived sky brightness at short distances from streetlights. These results provide quantitative support to the everyday experience that substantial gains in naked-eye star limiting magnitudes can be achieved by blocking the direct light from the lamps that reaches the eye pupil.

##plugins.themes.bootstrap3.article.details##

##plugins.themes.bootstrap3.article.details##

Keywords

sustainable lighting, scattering, light pollution, sky brightness, radiometry, eye

References
[1] Garstang, R. H. (1989). Night-sky brightness at observatories and sites. PASP 101, 306. doi:10.1086/132436
[2] Cinzano, P., & Falchi, F. (2012).The propagation of light pollution in the atmosphere. Monthly Notices of the Royal Astronomical Society 427(4), 3337–3357. doi: 10.1111/j.1365-2966.2012.21884.x
[3] Falchi, F., Cinzano, P., Duriscoe, D., Kyba, C. C. M., Elvidge, C. D., Baugh, K., Portnov, B. A., Rybnikova, N. A., & Furgoni, R. (2016). The new world atlas of artificial night sky brightness. Sci. Adv. 2, e1600377, doi: 10.1126/sciadv.1600377
[4] Kocifaj, M. (2007). Light-pollution model for cloudy and cloudless night skies with ground-based light sources. Applied Optics 46(15), 3013-22. doi: 10.1364/AO.46.003013
[5] Kocifaj, M. (2018). Multiple scattering contribution to the diffuse light of a night sky: A model which embraces all orders of scattering. Journal of Quantitative Spectroscopy and Radiative Transfer, 206, 260–72. doi: 10.1016/j.jqsrt.2017.11.020
[6] Bará, S., & Lima, R. C. (2018). Photons without borders: quantifying light pollution transfer between territories, International Journal of Sustainable Lighting 20(2), 51-61. doi:10.26607/ijsl.v20i2.87
[7] Bará, S., Rigueiro, I., & Lima, R. C. (2019). Monitoring transition: Expected night sky brightness trends in different photometric bands. Journal of Quantitative Spectroscopy and Radiative Transfer, 239, 106644. doi: 10.1016/j.jqsrt.2019.106644
[8] Bará, S., Falchi, F., Lima, R. C. & Pawley M. (2021). Can we illuminate our cities and (still) see the stars?. International Journal of Sustainable Lighting 23(2), 58-69. doi: 10.26607/ijsl.v23i2.113
[9] Falchi, F., & Bará, S. (2021). Computing light pollution indicators for environmental assessment. Natural Sciences, e10019. doi: 10.1002/ntls.10019
[10] Duriscoe, D. M., Anderson, S. J., Luginbuhl, C. B., & Baugh, K. E. (2018). A simplified model of all-sky artificial sky glow derived from VIIRS Day/Night band data. Journal of Quantitative Spectroscopy and Radiative Transfer, 214, 133–145. doi: 10.1016/j.jqsrt.2018.04.028
[11] Aubé, M., & Simoneau, A. (2018). New features to the night sky radiance model illumina: Hyperspectral support, improved obstacles and cloud reflection. Journal of Quantitative Spectroscopy and Radiative Transfer, 211, 25–34. doi: 10.1016/j.jqsrt.2018.02.033
[12] Simoneau, A., Aubé, M., Leblanc, J., Boucher, R., Roby, J., & Lacharité, F. (2021). Point spread functions for mapping artificial night sky luminance over large territories, Monthly Notices of the Royal Astronomical Society, 504(1), 951–963. doi: 10.1093/mnras/stab681
[13] Linares, H., Masana, E., Ribas, S. J., Aubé, M., Simoneau, A., & Bará, S. (2020). Night sky brightness simulation over Montsec protected area. Journal of Quantitative Spectroscopy and Radiative Transfer, 249, 106990. doi: 10.1016/j.jqsrt.2020.106990
[14] Bará, S., Bao-Varela, C. & Kocifaj, M. (2022). Modelling the artificial night sky brightness at short distances from streetlights. Journal of Quantitative Spectroscopy and Radiative Transfer (in press), doi: 10.1016/j.jqsrt.2022.108456
[15] Zamorano, J., Bará, S., Barco, M., García, C., & Caballero, A.L. (2023). Controlling the artificial radiance of the night sky: the Añora urban laboratory. Journal of Quantitative Spectroscopy and Radiative Transfer 296, 108454. doi: 10.1016/j.jqsrt.2022.108454
[16] Biedermann, K. (2002). "The Eye, Hartmann, Shack, and Scheiner," in Optical Information Processing: A Tribute to Adolf Lohmann, H. John Caulfield, Editor; Chapter 7, pp 123 - 130. SPIE PRESS, Bellingham, Washington, USA.
[17] Navarro R., Moreno, E. & Dorronsoro C. (1998). Monochromatic aberrations and point-spread functions of the human eye across the visual field, Journal of the Optical Society of America A, 15, 2522-2529.
[18] Thibos, L.N., Hong, X., Bradley, A., & Cheng, X. (2002). Statistical variation of aberration structure and image quality in a normal population of healthy eyes. Journal of the Optical Society of America A, 19(12), 2329-2348.
[19] Navarro, R., & Losada, M. A. (1997). Shape of stars and optical quality of the human eye. Journal of the Optical Society of America A, 14, 353-359.
[20] Bará, S. (2013). The sky within your eyes (Eye aberrations and visual Astronomy). Sky and Telescope, 126 (2), 68-71.
[21] van den Berg, T. J. T. P., Franssen, L., & Coppens, J. E. (2010). Ocular Media Clarity and Straylight. In Darlene A. Dartt (ed), Encyclopedia of the Eye, Vol 3. Oxford:Academic Press; pp. 173-183
[22] van den Berg, T. J. T. P., Franssen, L., Kruijt, B., & Coppens, J. E. (2013). History of ocular straylight measurement: A review. Zeitschrift für Medizinische Physik, 23, 6–20. doi: 10.1016/j.zemedi.2012.10.009
[23] Bará S. (2014). Naked-eye Astronomy: Optics of the starry night skies, Proc. SPIE 9289, 12th Education and Training in Optics and Photonics Conference, 92892S. doi: 10.1117/12.2070764
[24] CIE, Commision Internationale de l'Éclairage. (1990). CIE 1988 2° SpectralLuminous Efficiency Function for Photopic Vision. CIE 86:1990. Vienna: Bureau Central de la CIE..
[25] Bará S. (2017). Variations on a classical theme: On the formal relationship between magnitudes per square arcsecond and luminance, International Journal of Sustainable Lighting 19(2), 104-111. doi: 10.26607/ijsl.v19i2.77
[26] Bessell, M. S. (1990). UBVRI passbands. Publications of the Astronomical Society of the Pacific, 102, 1181-1199. doi: 10.1086/132749
[27] Bará, S., Aubé, M., Barentine, J., & Zamorano, J. (2020). Magnitude to luminance conversions and visual brightness of the night sky. Monthly Notices of the Royal Astronomical Society, 493, 2429–2437. doi: 10.1093/mnras/staa323
[28] Fryc, I., Bará, S., Aubé, M., Barentine, J. C. & Zamorano, J. (2022). On the Relation between the Astronomical and Visual Photometric Systems in Specifying the Brightness of the Night Sky for Mesopically Adapted Observers, Leukos, 18:4, 447-458, doi:10.1080/15502724.2021.1921593
[29] van den Berg, T. J. T. P., van Rijn, L. J., Michael, R., et al. (2007). Straylight effects with aging and lens extraction. American Journal of Ophthalmology 144: 358–363. doi: 10.1016/j.ajo.2007.05.037.
[30] Masana, E., Carrasco, J. M., Bará, S., & Ribas, S. J. (2021). A multi-band map of the natural night sky brightness including Gaia and Hipparcos integrated starlight. Monthly Notices of the Royal Astronomical Society, 501, 5443–5456. doi 10.1093/mnras/staa4005
[31] Masana, E., Bará, S., Carrasco, J. M., & Ribas, S. J. (2022). An enhanced version of the Gaia map of the brightness of the natural sky. International Journal of Sustainable Lighting, 24(1), 1-12. doi:10.26607/ijsl.v24i1.119
[32] Schaefer, B. E. (1990). Telescopic limiting magnitudes, Publications of the Astronomical Society of the Pacific, 102, 212-229. Calculator online in http://unihedron.com/projects/darksky/NELM2BCalc.html
[33] van den Berg, T. J., Hagenouw M. P. , & Coppens, J. E. (2005). The ciliary corona: physical model and simulation of the fine needles radiating from point light sources. Investigative Ophthalmology & Visual Science, 46(7), 2627-32. doi: 10.1167/iovs.04-0935
Section
Articles